Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682932

ABSTRACT

Hyperpolarized 129Xe gas MRI is an emerging technique to evaluate and measure regional lung function including pulmonary gas distribution and gas exchange. Chest computed tomography (CT) still remains the clinical gold standard for imaging of the lungs, though, in part due to the rapid CT protocols that acquire high-resolution images in seconds and the widespread availability of CT scanners. Quantitative approaches have enabled the extraction of structural lung parenchymal, airway and vascular measurements from chest CT that have been evaluated in many clinical research studies. Together, CT and 129Xe MRI provide complementary information that can be used to evaluate regional lung structure and function, resulting in new insights into lung health and disease. 129Xe MR-CT image registration can be performed to measure regional lung structure-function to better understand lung disease pathophysiology, and to perform image-guided pulmonary interventions. Here, a method for 129Xe MRI-CT registration is outlined to support implementation in research or clinical settings. Registration methods and applications that have been employed to date in the literature are also summarized, and suggestions are provided for future directions that may further overcome technical challenges related to 129Xe MR-CT image registration and facilitate broader implementation of regional lung structure-function evaluation.


Subject(s)
Lung , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Lung/diagnostic imaging , Humans , Tomography, X-Ray Computed/methods , Multimodal Imaging/methods , Animals
3.
Eur Respir J ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331459

ABSTRACT

BACKGROUND: Long COVID impacts ∼10% of people diagnosed with COVID-19, yet the pathophysiology driving ongoing symptoms is poorly understood. We hypothesised that 129Xe magnetic resonance imaging (MRI) could identify unique pulmonary phenotypic subgroups of long COVID, therefore we evaluated ventilation and gas exchange measurements with cluster analysis to generate imaging-based phenotypes. METHODS: COVID-negative controls and participants who previously tested positive for COVID-19 underwent 129XeMRI ∼14-months post-acute infection across three centres. Long COVID was defined as persistent dyspnea, chest tightness, cough, fatigue, nausea and/or loss of taste/smell at MRI; participants reporting no symptoms were considered fully-recovered. 129XeMRI ventilation defect percent (VDP) and membrane (Mem)/Gas, red blood cell (RBC)/Mem and RBC/Gas ratios were used in k-means clustering for long COVID, and measurements were compared using ANOVA with post-hoc Bonferroni correction. RESULTS: We evaluated 135 participants across three centres: 28 COVID-negative (40±16yrs), 34 fully-recovered (42±14yrs) and 73 long COVID (49±13yrs). RBC/Mem (p=0.03) and FEV1 (p=0.04) were different between long- and COVID-negative; FEV1 and all other pulmonary function tests (PFTs) were within normal ranges. Four unique long COVID clusters were identified compared with recovered and COVID-negative. Cluster1 was the youngest with normal MRI and mild gas-trapping; Cluster2 was the oldest, characterised by reduced RBC/Mem but normal PFTs; Cluster3 had mildly increased Mem/Gas with normal PFTs; and Cluster4 had markedly increased Mem/Gas with concomitant reduction in RBC/Mem and restrictive PFT pattern. CONCLUSION: We identified four 129XeMRI long COVID phenotypes with distinct characteristics. 129XeMRI can dissect pathophysiologic heterogeneity of long COVID to enable personalised patient care.

4.
Biotechniques ; 75(4): 157-167, 2023 10.
Article in English | MEDLINE | ID: mdl-37815826

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is an important tool for understanding disease pathophysiology, including airway diseases. Currently, the majority of scRNA-seq studies in airway diseases have used invasive methods (airway biopsy, surgical resection), which carry inherent risks and thus present a major limitation to scRNA-seq investigation of airway pathobiology. Bronchial brushing, where the airway mucosa is sampled using a cytological brush, is a viable, less invasive method of obtaining airway cells for scRNA-seq. Here we describe the development of a rapid and minimal handling protocol for preparing single-cell suspensions from bronchial brush specimens for scRNA-seq. Our optimized protocol maximizes cell recovery and cell quality and facilitates large-scale profiling of the airway transcriptome at single-cell resolution.


Subject(s)
Gene Expression Profiling , Software , Gene Expression Profiling/methods , Bronchoscopy , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods
5.
Viruses ; 15(8)2023 07 29.
Article in English | MEDLINE | ID: mdl-37631998

ABSTRACT

The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , SARS-CoV-2 , Immunologic Factors , Cytokines
7.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37318751

ABSTRACT

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Humans , Methionine/genetics , Methionine/metabolism , Escherichia coli/metabolism , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , Racemethionine/metabolism , Cell Proliferation/genetics , S-Adenosylmethionine/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mammals/metabolism , Tumor Microenvironment
8.
Respir Res ; 24(1): 124, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143066

ABSTRACT

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Subject(s)
HIV Infections , Pulmonary Disease, Chronic Obstructive , Humans , Dysbiosis/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Gene Expression Profiling , Epithelium , HIV Infections/epidemiology , HIV Infections/genetics
9.
Biomedicines ; 11(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36979819

ABSTRACT

Lower airway dysbiosis contributes to disease pathogenesis in respiratory diseases. However, little is known regarding the microbiota of lower airways or the oral cavity of healthy young persons. To address this gap, 25 healthy persons (24.3 ± 3.3 years; 52% females; no current smokers) underwent bronchoscopy during which bronchial brushing (BB) and bronchoalveolar lavage (BAL) fluid were collected. Prior to the procedure, an oral wash (OW) sample was also obtained. Microbiome analyses (16S rRNA locus) were performed (alpha- and beta-diversity, taxa annotations, and predicted functional metagenomic profiles) according to the airway compartment (BB, BAL, and OW). The greatest microbial richness was observed in OW and the lowest in BB (p < 0.001). Microbial communities differed significantly across compartments (p < 0.001), especially between BB and OW. Taxa analyses showed a significantly higher abundance of Firmicutes (BB: 32.7%; BAL: 31.4%) compared to OW (20.9%) (p < 0.001). Conversely, Proteobacteria predominated in OW (27.9%) as opposed to BB (7.0%) and BAL (12.5%) (p < 0.001), mostly due to a greater abundance of the bacteria in the Haemophilus genus in the OW (p < 0.001). The lower airway microbiota (BB and BAL) is significantly different from the OW microbiota in healthy young persons with respect to microbial diversity, taxa profiles, and predicted function.

10.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-36949960

ABSTRACT

Purpose: Obstructive lung disease is increasingly common among persons with HIV, both smokers and nonsmokers. We used aptamer proteomics to identify proteins and associated pathways in HIV-associated obstructive lung disease. Methods: Bronchoalveolar lavage fluid (BALF) samples from 26 persons living with HIV with obstructive lung disease were matched to persons living with HIV without obstructive lung disease based on age, smoking status and antiretroviral treatment. 6414 proteins were measured using SomaScan® aptamer-based assay. We used sparse distance-weighted discrimination (sDWD) to test for a difference in protein expression and permutation tests to identify univariate associations between proteins and forced expiratory volume in 1 s % predicted (FEV1 % pred). Significant proteins were entered into a pathway over-representation analysis. We also constructed protein-driven endotypes using K-means clustering and performed over-representation analysis on the proteins that were significantly different between clusters. We compared protein-associated clusters to those obtained from BALF and plasma metabolomics data on the same patient cohort. Results: After filtering, we retained 3872 proteins for further analysis. Based on sDWD, protein expression was able to separate cases and controls. We found 575 proteins that were significantly correlated with FEV1 % pred after multiple comparisons adjustment. We identified two protein-driven endotypes, one of which was associated with poor lung function, and found that insulin and apoptosis pathways were differentially represented. We found similar clusters driven by metabolomics in BALF but not plasma. Conclusion: Protein expression differs in persons living with HIV with and without obstructive lung disease. We were not able to identify specific pathways differentially expressed among patients based on FEV1 % pred; however, we identified a unique protein endotype associated with insulin and apoptotic pathways.

11.
Curr Opin HIV AIDS ; 18(2): 93-101, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36722198

ABSTRACT

PURPOSE OF REVIEW: As people living with human immunodeficiency virus (HIV, PLWH) age, aging-related comorbidities have come into focus as major challenges to their overall health. In this review, an in-depth overview of the two most commonly encountered chronic lung diseases in PLWH, chronic obstructive pulmonary disease (COPD) and lung cancer, is provided. RECENT FINDINGS: The risk for both COPD and lung cancer remains significantly higher in PLWH compared to the HIV-uninfected population, although fortunately rates of lung cancer appear to be declining over the last two decades. Outcomes for PLWH with these conditions, though, continue to be poor with worse survival rates in comparison to the general population. PLWH still face major barriers in accessing care for these conditions, including a higher likelihood of being underdiagnosed with COPD and a lower likelihood of being referred for lung cancer screening or treatment. A lack of evidence for optimal treatment strategies for both COPD and lung cancer still hampers the care of PLWH with these conditions. SUMMARY: COPD and lung cancer represent substantial burdens of disease in PLWH. Improved access to standard-of-care screening and treatment and greater investigation into therapeutic responses specifically in this population are recommended.


Subject(s)
HIV Infections , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Early Detection of Cancer , HIV Infections/complications , HIV Infections/epidemiology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Aging
12.
Biomedicines ; 11(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36672643

ABSTRACT

Epigenetic modifications are common in chronic obstructive pulmonary disease (COPD); however, their clinical relevance is largely unknown. We hypothesized that epigenetic disruptions are associated with symptoms and health status in COPD. We profiled the blood (n = 57) and airways (n = 62) of COPD patients for DNA methylation (n = 55 paired). The patients' health status was assessed using the St. George's Respiratory Questionnaire (SGRQ). We conducted differential methylation analyses and identified pathways characterized by epigenetic disruptions associated with SGRQ scores and its individual domains. 29,211 and 5044 differentially methylated positions (DMPs) were associated with total SGRQ scores in blood and airway samples, respectively. The activity, impact, and symptom domains were associated with 9161, 25,689 and 17,293 DMPs in blood, respectively; and 4674, 3730 and 5063 DMPs in airways, respectively. There was a substantial overlap of DMPs between airway and blood. DMPs were enriched for pathways related to common co-morbidities of COPD (e.g., ageing, cancer and neurological) in both tissues. Health status in COPD is associated with airway and systemic epigenetic changes especially in pathways related to co-morbidities of COPD. There are more blood DMPs than in the airways suggesting that blood epigenome is a promising source to discover biomarkers for clinical outcomes in COPD.

13.
Environ Res ; 216(Pt 4): 114826, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36403657

ABSTRACT

The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 µg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.


Subject(s)
Air Pollutants , Air Pollution , Microbiota , Humans , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Smokers , Air Pollution/analysis , Metagenome , Air Pollutants/analysis
15.
Biomedicines ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551848

ABSTRACT

One key feature of Chronic Obstructive Pulmonary Disease (COPD) is that its prevalence increases exponentially with age. DNA methylation clocks have become powerful biomarkers to detect accelerated aging in a variety of diseases and can help prognose outcomes in severe COPD. This study investigated which DNA methylation clock could best reflect airway epigenetic age when used in more accessible blood samples. Our analyses showed that out of six DNA methylation clocks investigated, DNAmGrimAge demonstrated the strongest correlation and the smallest difference between the airway epithelium and blood. Our findings suggests that blood DNAmGrimAge accurately reflects airway epigenetic age of individuals and that its elevation is highly associated with COPD.

16.
PLoS Pathog ; 18(11): e1010613, 2022 11.
Article in English | MEDLINE | ID: mdl-36331974

ABSTRACT

The lung is an understudied site of HIV persistence. We isolated 898 subgenomic proviral sequences (nef) by single-genome approaches from blood and lung from nine individuals on long-term suppressive antiretroviral therapy (ART), and characterized genetic diversity and compartmentalization using formal tests. Consistent with clonal expansion as a driver of HIV persistence, identical sequences comprised between 8% to 86% of within-host datasets, though their location (blood vs. lung) followed no consistent pattern. The majority (77%) of participants harboured at least one sequence shared across blood and lung, supporting the migration of clonally-expanded cells between sites. The extent of blood proviral diversity on ART was also a strong indicator of diversity in lung (Spearman's ρ = 0.98, p<0.0001). For three participants, insufficient lung sequences were recovered to reliably investigate genetic compartmentalization. Of the remainder, only two participants showed statistically significant support for compartmentalization when analysis was restricted to distinct proviruses per site, and the extent of compartmentalization was modest in both cases. When all within-host sequences (including duplicates) were considered, the number of compartmentalized datasets increased to four. Thus, while a subset of individuals harbour somewhat distinctive proviral populations in blood and lung, this can simply be due to unequal distributions of clonally-expanded sequences. For two participants, on-ART proviruses were also phylogenetically analyzed in context of plasma HIV RNA populations sampled up to 18 years prior, including pre-ART and during previous treatment interruptions. In both participants, on-ART proviruses represented the most ancestral sequences sampled within-host, confirming that HIV sequences can persist in the body for decades. This analysis also revealed evidence of re-seeding of the reservoir during treatment interruptions. Results highlight the genetic complexity of proviruses persisting in lung and blood during ART, and the uniqueness of each individual's proviral composition. Personalized HIV remission and cure strategies may be needed to overcome these challenges.


Subject(s)
HIV Infections , HIV-1 , Humans , Proviruses/genetics , Anti-Retroviral Agents/therapeutic use , HIV-1/genetics , CD4-Positive T-Lymphocytes , Genetic Variation , Lung , Viral Load/genetics
17.
EBioMedicine ; 83: 104206, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944348

ABSTRACT

BACKGROUND: Age-related comorbidities such as chronic obstructive pulmonary disease (COPD) are common in people living with human immunodeficiency virus (PLWH). We investigated the relationship between COPD and the epigenetic age of the airway epithelium and peripheral blood of PLWH. METHODS: Airway epithelial brushings from 34 PLWH enrolled in the St. Paul's Hospital HIV Bronchoscopy cohort and peripheral blood from 378 PLWH enrolled in The Strategic Timing of Antiretroviral Treatment (START) study were profiled for DNA methylation. The DNA methylation biomarker of age and healthspan, GrimAge, was calculated in both tissue compartments. We tested the association of GrimAge with COPD in the airway epithelium and airflow obstruction as defined by an FEV1/FVC<0.70, and FEV1 decline over 6 years in blood. FINDINGS: The airway epithelium of PLWH with COPD was associated with greater GrimAge residuals compared to PLWH without COPD (Beta=3.18, 95%CI=1.06-5.31, P=0.005). In blood, FEV1/FVC

Subject(s)
HIV Infections , Pulmonary Disease, Chronic Obstructive , Aging/genetics , Biomarkers , British Columbia , Cohort Studies , Epigenesis, Genetic , HIV Infections/complications , HIV Infections/genetics , Humans , Lung , Pulmonary Disease, Chronic Obstructive/genetics
18.
J Acquir Immune Defic Syndr ; 91(3): 312-318, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35849661

ABSTRACT

BACKGROUND: HIV is a risk factor for obstructive lung disease (OLD), independent of smoking. We used mass spectrometry (MS) approaches to identify metabolomic biomarkers that inform mechanistic pathogenesis of OLD in persons with HIV (PWH). METHODS: We obtained bronchoalveolar lavage fluid (BALF) samples from 52 PWH, in case:control (+OLD/-OLD) pairs matched on age, smoking status, and antiretroviral treatment. Four hundred nine metabolites from 8 families were measured on BALF and plasma samples using a MS-based Biocrates platform. After filtering metabolites with a high proportion of missing values and values below the level of detection, we performed univariate testing using paired t tests followed by false discovery rate corrections. We used distance-weighted discrimination (DWD) to test for an overall difference in the metabolite profile between cases and controls. RESULTS: After filtering, there were 252 BALF metabolites for analysis from 8 metabolite families. DWD testing found that collectively, BALF metabolites differentiated cases from controls, whereas plasma metabolites did not. In BALF samples, we identified 3 metabolites that correlated with OLD at the false discovery rate of 10%; all were in the phosphatidylcholine family. We identified additional BALF metabolites when analyzing lung function as a continuous variable, and these included acylcarnitines, triglycerides, and a cholesterol ester. CONCLUSIONS: Collectively, BALF metabolites differentiate PWH with and without OLD. These included several BALF lipid metabolites. These findings were limited to BALF and were not found in plasma from the same individuals. Phosphatidylcholine, the most common lipid component of surfactant, was the predominant lipid metabolite differentially expressed.


Subject(s)
HIV Infections , Lung Diseases, Obstructive , Biomarkers , Bronchoalveolar Lavage Fluid/chemistry , Cholesterol Esters , HIV Infections/complications , HIV Infections/pathology , Humans , Lung , Metabolome , Phosphatidylcholines , Surface-Active Agents , Triglycerides
19.
Biomedicines ; 10(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35740433

ABSTRACT

The associations between airway eosinophilia, measured in sputum or peripheral blood, and acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are inconsistent. We therefore aimed to determine the association between eosinophilia in bronchoalveolar lavage (BAL) fluid and AECOPD in a clinical cohort. We analyzed differential cell counts from baseline BAL fluid in participants in the DISARM clinical trial (Clinicaltrials.gov #NCT02833480) and classified participants by the presence or absence of BAL eosinophilia (>1% of total leukocytes). We determined the association between BAL eosinophilia and AECOPD over 1 year of follow-up using negative binomial regression and Cox proportional hazards test. N = 63 participants were randomized, and N = 57 had BAL differential cell counts available. Participants with BAL eosinophilia (N = 21) had a significantly increased rate of acute exacerbations (unadjusted incidence rate ratio (IRR) 2.0, p = 0.048; adjusted IRR 2.24, p = 0.04) and a trend toward greater probability of acute exacerbation (unadjusted hazard ratio (HR) 1.74, p = 0.13; adjusted HR 2.3, p = 0.1) in the year of follow-up compared to participants without BAL eosinophilia (N = 36). These associations were not observed for BAL neutrophilia (N = 41 participants), BAL lymphocytosis (N = 27 participants) or peripheral blood eosinophilia at various threshold definitions (2%, N = 37; 3%, N = 27; 4%, N = 16). BAL may therefore be a sensitive marker of eosinophilic inflammation in the distal lung and may be of benefit for risk stratification or biomarker-guided therapy in COPD.

20.
Respir Res ; 23(1): 141, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35641962

ABSTRACT

BACKGROUND: Immunoglobulin G (IgG) deficiency increases the risk of acute exacerbations and mortality in chronic obstructive pulmonary disease (COPD). However, the impact of IgG subclass deficiency on mortality in COPD is unknown. Here, we determined which IgG subclass, if any, is associated with increased risk of mortality in COPD. METHODS: We measured serum IgG subclass concentrations of 489 hospitalized patients with COPD who were enrolled in the Rapid Transition Program (clinicaltrials.gov identifier NCT02050022). To evaluate the impact of IgG subclass deficiency on 1-year mortality, Cox proportional hazards regression analyses were performed with adjustments for potential confounders. RESULTS: Deficiencies in IgG1, IgG2, IgG3, and IgG4 were present in 1.8%, 12.1%, 4.3%, and 11.2% of patients, respectively. One-year mortality was 56% in patients with IgG1 deficiency, 27% in IgG2 deficiency, 24% in IgG3 deficiency, and 31% in IgG4 deficiency. Cox proportional modeling showed that IgG1 and IgG4 deficiencies increased the 1-year mortality risk with an adjusted hazard ratio of 3.92 (95% confidence interval [CI] = 1.55-9.87) and 1.74 (95% CI = 1.02-2.98), respectively. Neither IgG2 nor IgG3 deficiency significantly increased 1-year mortality. Two or more IgG subclass deficiencies were observed in 5.3%. Patients with 2 or more IgG subclass deficiencies had a higher 1-year mortality than those without any deficiencies (46.2% vs. 19.7%, p < 0.001), with an adjusted hazard ratio of 2.22 (95% CI = 1.18-4.17). CONCLUSIONS: IgG1 and IgG4 deficiency was observed in 1.8% and 11.2% of hospitalized patients with COPD, respectively, and these deficiencies were associated with a significantly increased risk of 1-year mortality.


Subject(s)
IgG Deficiency , Immunologic Deficiency Syndromes , Pulmonary Disease, Chronic Obstructive , Humans , IgG Deficiency/diagnosis , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...